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Abstract
We present the hydrogen (H) solubility isotherms in biaxially compressed and
elastically constrained quasi-two-dimensional V lattices. The relative partial
enthalpy and entropy, as determined from the isotherms, show a temperature
dependence for [H/V] � 0.1 (atomic ratio). This has not previously been
reported for H in bulk V and indicates the presence of strong H–H correlations.
For [H/V] � 0.1, the H–H interaction was determined to be roughly three
times more attractive than in bulk V. The compressibility of the H lattice-gas
is derived, and the asymptotic behaviour when approaching the critical point is
shown to be in accordance with mean-field theory. The critical temperature and
the critical concentration for transition were determined to be TC = 251 ± 1
and [H/V] ≈ 0.0365, respectively. The effects of the extension of the lattice
and the elastic constraints of the V layers on the H–H interaction and critical
behaviour are discussed.

1. Introduction

The relation between dimensionality and stability of phases is not yet fully resolved, and
continues to motivate new theoretical and experimental research on the subject. Theoretical
arguments exclude crystalline order in two dimensions (2D) [1], but permit transitions to
short-range ordered phases. Studies of structural phase transitions and critical behaviour in
2D have previously mainly been performed by using adsorbates on solid (or liquid) surfaces.
Recent research on hydrogen (H) in superlattices have, however, founded a new experimental
playground for addressing questions of this kind. A superlattice composed from two metals
with very different H solubility, constitutes a stack of quasi-2D H absorbing structures. The
phase diagram for the dissolved H is easily accessible through solubility measurements.
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Figure 1. The different interstitial sites occupied in Fe/V superlattices. Tetrahedral sites (T) and
octahedral sites (O). Whereas the local strain field is close to isotropic for T sites, it is uniaxial for
O sites.

Lattice-gas to lattice-liquid phase transformations (α–α′) of H in the transition metals
have been the subject of several earlier investigations. The pioneering work within this
field is due to Alefeld [2], who proposed that the transition is driven by long-range elastic
interaction between the dissolved H (H–H interaction). Wagner and Horner [3, 4] assumed
an interaction of this type and developed the statistical mechanics for the corresponding
phase transition. They especially pointed out that the elastic H–H interaction is of Curie–
Weiss type (infinite-range) and that for a coherent crystal, macroscopic and shape-dependent
H density modes are developing when the phase boundary is crossed. The macroscopic
modes were later experimentally verified in single crystals of Nb [5]. Detailed studies of
the critical behaviour of H in Pd were carried out by Buck and Alefeld [6], and Ribaupierre
and Manchester [7] (PdAg). Both studies resulted in mean-field critical exponents, in the
latter study as close as T/TC − 1 ≈ 10−3. Since the mean-field approximation is exact for
infinite-range interaction, the result was taken as a strong indication that the transition is driven
by elastic interaction.

Previous studies of H in Fe/V and Mo/V superlattices focused on the relation between
finite-size effects and strain effects of the H uptake [8]. V layers under initial biaxial
compressive strain have proved to exhibit an unusually strong attractive H–H interaction in the
concentration range [H/V] � 0.1 (atomic ratio). The strong attractive interaction,as compared
to the bulk, is probably the result of the fact that H occupies the Oz sites in the superlattice
instead of T sites, which is the normal site occupancy in bulk V. If H is occupying Oz sites in an
(001) oriented film, the axes of the local strain fields are aligned in the out-of-plane direction
(i.e. z in figure 1). Since, for the superlattice, the V layers are unable to expand in the film plane,
a larger part of the local strain can propagate to the sample edges if Oz sites are populated, as
compared to T site occupancy. Consequently, an Oz occupancy also implies a larger lattice
expansion and a stronger attractive H–H interaction [9]. Moreover, recent experiments point
out the possibility of a second-order phase transition within this concentration range [10]. The
purpose of the current communication is to investigate the validity of the Curie–Weiss law
for H–H interactions in a quasi-2D host lattice and to exploit the possibility of dimensionality
crossover. The H solubility isotherms in the solid solution range and in the vicinity of the
critical concentration are presented. Furthermore, the compressibility of the H lattice-gas is
deduced from the isotherm and its divergence, when approaching the critical temperature,
is explored. We also discuss the van’t Hoff analysis of the isotherms, which reveals a strong
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Figure 2. (a) The x-ray reflectivity from a virgin Fe/V superlattice. The orders of the superlattice
peaks are indicated in the figure. The broadening of the peaks for higher angles is negligible,
indicating well defined layer thickness. The result from the simulated reflectivity is further
discussed in section 2.1. (b) The high-angle x-ray diffraction pattern from the same sample.
The high-angle superlattice satellites are denoted as ±n, n = 1, . . . , 2.

temperature dependence of the enthalpy and entropy of solution in the low concentration range
([H/V] � 0.1).

2. Experimental details

2.1. Sample properties and characterization

An Fe2ML/V12ML × 25 (ML = monolayer) superlattice was grown on an MgO(001) substrate
using magnetron sputtering. For a more detailed description of the sputtering system and
growth of Fe/V superlattices, see [11]. The substrate was annealed at approximately 625 ◦C,
at p < 10−10 mbar, for 30 min prior to film growth. The sample was grown at 330 ◦C in an
Ar (99.9999%) atmosphere of 6.66 × 10−3 mbar. A 50 Å thick Pd layer was deposited on top
of the film to prohibit oxidation and to serve as a catalytic activator for H dissociation.

The structural quality of the film was investigated with x-ray reflectivity (XRR), and
conventional x-ray diffraction (XRD). Both x-rays studies used Cu Kα radiation and a
conventional Bragg–Brentano set-up (Siemens/Bruker D5000). The result from the XRR
is shown in figure 2(a). In the XRR pattern, thin-film thickness oscillations appear up to 8◦ in
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(2θ ), indicating small variations in the total thickness of the film. A simulation of the XRR
pattern, using the Philips WinGIXA software [12, 13], gives an estimation of the interface
roughness, i.e., root mean square deviation from an ideally sharp interface, equal to 2.2 Å,
and an average bilayer thickness equal to 20.9 Å. The XRD data, seen in figure 2(b), show the
fundamental (002) Bragg peak of the film with 1(2) satellite peaks in the lower (higher) angle
range. The full width at half maximum of the rocking curve on the (002) Bragg peak was
determined to be 0.6◦. 2D reciprocal space mapping around the (002), (112) and (022) Bragg
peaks was also performed on a Philips X’Pert MRD. The crystalline coherence length, i.e., the
distance over which the positions of the atoms are quantitatively correlated, was deduced to be
about 2/5 of the total film thickness (210 Å) in the out-of-plane direction. In the [110] and [020]
directions (in-plane), the coherence lengths were estimated to be 280 and 180 Å, respectively.
The average out-of-plane and in-plane lattice parameters were determined to be 2.976(5) and
2.963(5) Å, respectively. Applying linear elasticity, assuming in-plane coherency, and using
the elastic constants for bulk V, gives an out-of-plane lattice parameter of the V layers equal
to 3.08 Å, which yields a c/a ratio of the virgin bct cell of the V layers of ≈1.04.

2.2. p–c–T measurements

The solubility isotherms were determined from resistivity measurements in an H gas loading
apparatus thoroughly described in [10]. During the experiment, the partial pressure of all
other gases except H was below 10−9 mbar. The relative resistivity change due to H (�ρ/ρ0,
where ρ0 is the resistivity at 313 K without H) was measured in situ by a DC current-reversal
technique using a Keithley 2400 Sourcemeter and a Keithley 2182 Nanovoltmeter [14]. The
temperature of the film was measured by a chromel–alumel thermocouple, which was in direct
contact with the sample surface. An external heating element connected to a Eurotherm 2408
PID controller regulated the temperature within ±0.1 K. The H gas pressure was monitored
by three capacitance diaphragm gauges from CCM, Leybold, and Inficon, with a full-scale of
1, 100, and 1000 Torr, respectively. All pressure gauges had a resolution of 0.1% of full-scale.
The H gas used in the experiment, originally of 99.9996% purity, was additionally purified, first
using a West Associates Ultrapure H gas purifier, and then through an absorption–desorption
cycle in a metal–hydride powder.

The [H/V] atomic ratio can be deduced from the resistivity change of the sample. At
low H concentrations, the resistivity change is strictly proportional to the H concentration. At
higher concentrations this simple proportionality is lost, which normally originates from one
or more of the following sources. (1) H–H correlation can affect the resistivity. The effect will
however be negligible if the correlation length of the H structure is much smaller than the mean
free path of the electrons. (2) H-induced modifications of the electronic structure can cause
a significant change in the resistivity [16]. (3) The fact that H occupies a discrete number of
interstitial sites gives rise to a parabolic shape of the resistance change curve [15]. Instead of
separating all the above contributions to the resistivity change, �ρ/ρ0 can be expressed as a
truncated power series in the [H/V] atomic ratio (here denoted as x):

�ρ

ρ0
= bx + cx2. (1)

Conversion between resistance and H concentration, based on equation (1), has proved to
be feasible for similar superlattices [17, 18]. For very high H gas pressures, the resistivity
asymptotically approached a maximum, i.e., �ρ/ρ0(max) = 0.635(5). The maximum H
concentration of Fe/V(001) superlattices, xmax ≈ 1, is known from earlier experiments [10, 19],
which thereby gives c = −0.635(5) and b = 1.27(5) in equation (1).
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Figure 3. The solubility isotherms of H in solid solution in an Fe/V superlattice. The inflection
points of the isotherms occur at a concentration which is almost one order of magnitude lower than
for bulk V.

3. Results and discussion

3.1. Solubility isotherms, enthalpy, and entropy

The H solubility isotherms of the superlattice, as deduced from the resistivity measurements,
are presented in figure 3. The solubility in the very low concentration range, i.e., [H/V] � 0.01,
is according to Sievert’s law, which means that the concentration is proportional to the square
root of the H gas pressure. At higher concentrations, the isotherms clearly deviate from
this behaviour and inflection points of the isotherms can, depending on the temperature, be
observed in the concentration range 0.05 � [H/V] � 0.09. Inflection points of the isotherms
are also observed for bulk V [20], but at higher concentrations ([H/V] ≈ 0.25). For Nb and
Pd, the concentration at the inflection point is treated as a marker for the critical concentration
for a transition from H lattice-gas to H lattice-liquid. For V, on the other hand, the gas–
liquid transition is obscured by the transition to the ordered β-phase [2]. Within the measured
concentration and temperature range, the present sample showed no transition of the latter kind,
which is also concluded from previous measurements on the same type of samples. [19, 10].

The pressure dependence of the chemical potential of H gas can be written as

µH2 = µ0
H2

+ kBT ln p, (2)

where µ0
H2

is the chemical potential at the reference pressure (1 atm). At equilibrium, the
chemical potentials of H in the gas phase ( 1

2 µH2 ) and the dissolved H (µα) are equal, which,
using equation (2), gives the following relation [21]:

�µH ≡ kBT ln
√

p = �H̄H − T�S̄H, (3)
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Figure 4. (a) A plot of �µ0 ≡ kBT ln Ks, where Ks is Sievert’s constant, for H in an Fe/V
superlattice. (b) The relative chemical potential of H at various concentrations in the same sample.

where �µH, �H̄H, and �S̄H, are the respective relative chemical potential, partial enthalpy,
and partial entropy. Plots of �µH versus T at various concentrations are presented in figure 4.
Evidently, from the figure, the strict proportionality between �µH and T is no longer valid
in the low concentration range (H/V � 0.1). This is in contrast to previous measurements of
the single phase thermodynamics of H in bulk V [22] and thin V layers [17], and implies a
temperature dependence in �H̄H and �S̄H. The temperature dependence of �µH at various
concentrations was successfully described with a second-order polynomial in the temperature,
shown as the solid lines in figure 4. The enthalpy and entropy could thereby be derived from
the chemical potential using the following thermodynamic relations [23]:

�H̄H = �µH − T
∂�µH

∂T
(4)

�S̄H = −∂�µH

∂T
. (5)

The deduced relative partial enthalpy and entropy of the dissolved H are presented, at three
different temperatures, in figure 5.

The term −kB ln x , where x is the atomic ratio, is usually subtracted from the entropy in
order to avoid a diverging entropy term at low concentrations:

�S̄′
H = �S̄H + kB ln x . (6)
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Figure 5. The relative partial enthalpy and entropy for H in an Fe/V superlattice at three different
temperatures. The solid curves are for bulk V [20].

In the limit x → 0, �S̄′
H → �S̄0

H, and �H̄H → �H̄ 0
H, which are denoted as the partial

enthalpy and entropy of solution at infinite dilution, respectively, and can be deduced from the
temperature dependence of Sievert’s constant,

Ks(T ) ≡ exp

(
�H̄ 0

H

kBT
− �S̄0

H

kB

)
. (7)

Ks is obtained from the slope of the isotherms at lowest concentrations and highest
temperatures. �µ0 ≡ kBT ln Ks (T ) as a function of temperature is shown for the four highest
temperatures in figure 4. Within this temperature range no temperature dependence was noticed
in �H̄ 0

H and �S̄0
H. From equation (7), the enthalpy and entropy of solution at infinite dilution

were determined to be �H̄ 0
H = −0.217(3) eV/H-atom and �S̄0

H = −7.52(6)kB/H-atom,
respectively. Compared to bulk V, �H̄ 0

H is ≈90 meV/H-atom less negative, and �S̄0
H is

changed by ≈−0.5kB/H-atom. The large shift of �H̄ 0
H towards a less exothermic reaction

compared to the bulk has been discussed elsewhere [10], and is partly due the effect of the
biaxial compressive strain of the V cell on the mean interaction potential constituted from the
free electrons of the metal.

For the lowest temperatures, where plots of
√

p versus x are nonlinear even at very low
concentrations, the above Sievert’s analysis of the isotherms cannot be applied. However,
an extrapolation of �H̄H to zero concentration, and a fit of �S̄H to equation (6) in the
low concentration range, give an estimation of �H̄ 0

H and �S̄0
H, respectively. This reveals

a temperature dependence in both �H̄ 0
H and �S̄0

H. As the temperature is lowered from
473 to 323 K, �H̄ 0

H and �S̄0
H are changing by ≈−20 meV/H-atom and �−0.8kB/H-atom,

respectively.
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Previous investigations of V show that the H-site occupancy can easily be changed by
applying strain [24]. It is plausible that the elongation of the c-axis of the V-cell in Fe/V(001)
superlattices induces a change of site, from tetrahedral (T), which is the normal occupancy in
bulk V, to octahedral z (Oz) sites. This picture is supported both from the H-induced lattice
expansion [25] and from EXAFS measurements [26]. The population of two different sites
with a small difference in absorption potential would produce a temperature dependence of
�H̄ 0

H similar to what is observed for the superlattice. The entropy data also give a hint of which
site is more energetically favourable to occupy. �S̄0

H can be separated in one configurational
and one non-configurational term:

�S̄0
H = �S̄nc,0

H + kB ln β, (8)

where β is the number of sites per metal atom that are available for occupation, i.e., β = 6
for T and β = 1 for Oz . The simplest approach is to assume that �S̄nc,0

H is the same as in bulk
V, and to attribute the observed shift of �S̄0

H with temperature to a multiple population of T
and Oz sites. This results in a ratio of H occupying Oz sites to the total number of H, which
changes from ≈30% to ≈80% if the temperature is reduced from 473 to 323 K.

Within a range of continuous solubility, the change of �H̄H with concentration can be
interpreted to be due to a mean H–H interaction, which at low concentrations is attractive
(negative slope) and at higher concentrations repulsive (positive slope). By using a mean-field
approach, the enthalpy can be written as

�H̄H = �H̄ 0
H + ux, (9)

where u is the mean interaction energy. Using equation (9) we can estimate the mean
H–H interaction in the superlattice from the initial slope of �H̄H versus x . This gives
u ≈ −0.77 eV/H-atom at 473 K, which is roughly three times more attractive than for
bulk V, and as can be seen in figure 5(a), the interaction is even further enhanced at lower
temperatures. The adhesion of the film to the substrate, as well as to the H-free layers,
constrains the H-induced lattice expansion to occur solely in the out-of-plane direction. As
originally pointed out by Alefeld [2], elastic constraints are expected to reduce the elastic H–H
interaction. However, within this context it is essential to take into account the symmetry
and orientation of the local strain field surrounding the H atom [9]. The symmetry of the
local strain field induced by H at Oz sites (see figure 1) is uniaxial, with the axis parallel
with the out-of-plane direction, whereas it is nearly isotropic for T sites. Since the layers
are unable to expand in the plane the occupation of Oz sites implies a more effective
propagation of the strain field to the sample edges. Hence, the strong H–H interaction in
the superlattice can be associated with a partial population of Oz sites. The link between H-
site occupancy and H–H interactions in the case of 2D elastic constraints is further discussed
in [9].

The concentration dependence of �S̄H reveals a significant deviation from a random
distribution already at very low concentration, which is very different from the behaviour in
the bulk (see figure 5). The inhomogeneities in the H distribution, which are pronounced at
lower temperatures, is a clear sign of H ordering. The general behaviour of H in the superlattice,
showing an unusual strong attractive H–H interaction at low concentrations, and a crossover
to repulsive H–H interaction at much lower concentrations than for bulk V, is unique for
Fe/V(001) superlattices [19, 10]. The H ordering, strong interaction, and the temperature
dependence of �H̄H and �S̄H, clearly manifest a very different H phase behaviour than in
bulk V.
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Figure 6. The temperature dependence of the isothermal compressibility (κT) of the H lattice-gas
evaluated at the points of inflection of the H solubility isotherms in an Fe/V superlattice. The inset
show the results from fitting the compressibility according to ln κT = γ ln [T/Tc − 1] for different
values of γ and Tc. The largest value for the linear correlation coefficient (R2) corresponds to
Tc = 251 ± 1 K and γ = −1.01 ± 0.01.

3.2. Critical behaviour

The isothermal compressibility of the H lattice-gas can be determined from the slope of the
solubility isotherms [6]:

κ−1
T ∝ x2T p−1 ∂p

∂x

∣∣∣∣
p,T

. (10)

When approaching a critical point from above (in temperature) one would expect a diverging
compressibility according to

κT ∝ t−γ , t ≡ T

TC
− 1. (11)

The critical temperature, TC, and the exponent, γ , are determined from a plot of ln κT versus
lnt for different values of TC. The maximum value of the correlation coefficient of a linear fit to
the data (R2) occurs with TC = 251 ± 1 K and γ = 1.01 ± 0.01 (see the inset to figure 6), and
the corresponding plot for this set of critical parameters is presented in figure 6. The obtained
value for γ agrees with mean-field theory, and is also in accordance with the corresponding
exponent for the α–α′ transition of H in bulk Pd [7] and Nb [27]. The phase boundary can
be determined from the asymptotic behaviour of the isotherms near the critical concentration.
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From the condition for thermodynamic stability,

∂µH

∂x
� 0, (12)

the boundary to the region of unstable states, i.e., the spinodal, can be identified as when
∂µH/∂x = 0. The change in chemical potential with concentration is easily extracted from
the isotherms, i.e.,

∂µH

∂x
∝ T

p

∂p

∂x

∣∣∣∣
p,T

, (13)

and the spinodal boundary at selected concentrations around the critical point is shown in
figure 7. The same technique used for determining γ and TC can now be applied to find the
critical concentration (xC) and the critical exponent β. In this case, however, a simple power
law was inadequate to fit the spinodal curve. The best fit gives xC = 0.0365 and β ≈ 0.55, and
is plotted as the solid curve in figure 7. The obtained value for β is in reasonable agreement
with the mean-field value (β = 0.5), and thereby consistent with the findings above. Despite
the difficulties in fitting the spinodal curve with a simple power law, the experimental points are
symmetric with respect to xC, and one can assume that the value for the critical concentration
is accurate. It is worth noticing that the concentration at the critical point is almost one order
of magnitude lower than for the corresponding transition in bulk samples of Nb or Pd.

Using a generalized model of the interaction, the temperature range where the classical
(mean-field) theory does not apply (tnonclassical) has been estimated by Fisher [28]:

tnonclassical ≈ A
(a

b

)d
. (14)
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Here A is of the order unity, a is the size of the interacting particles, b is the range of the
interaction, and d is the dimensionality. Depending on the value of t at the inflection points,
equation (14) gives the lower limit of the range of the H–H interaction:

b � 2.2a (2D) (15)

b � 1.7a (3D) . (16)

A rough estimation of a can be made using the critical concentration and by assuming randomly
distributed H. If this value is inserted in equations (15) and (16), we have

b � 24 Å (2D) (17)

b � 12 Å (3D) . (18)

It is obvious from equations (17) and (18) that, regardless of the dimensionality, phase
transitions due to macroscopic-range interaction would behave according to the mean-field
model infinitely close to the critical temperature. On the other hand, for phase transitions
due to finite-range interaction, equations (17) and (18) give a lower limit of the range of the
interaction, which is of the order of the thickness of the V layers, i.e., �10 Å.

4. Conclusion

The enthalpy and entropy data, as deduced from the solubility isotherms, indicate a strong H–H
correlation at concentrations as low as [H/V] ≈ 0.05, which is in stark contrast to bulk V. The
enhanced H–H interaction in Fe/V(001) superlattices has previously been associated with a
parallel alignment of the elastic dipoles, as a result of exclusive population of Oz sites. This
concept was first brought up by Alefeld [2],but experimental evidence of such behaviour has up
to now been scarce. Although the population of Ox and Oy can be excluded, partial occupation
of T sites is still possible. We are here arguing that the multiple population of Oz and T sites
is causing the temperature dependence seen in �H̄ 0

H and �S̄0
H. The concentration dependence

of the entropy indicates a strong H–H correlation at low concentration, and for temperatures
below ≈400 K. The mean-field behaviour of the compressibility and the coexistence curve,
however, indicate that the H are correlated over, at least, distances of the order of the V layer
thickness. This highlights the importance of long-range elastically mediated interactions in
H–metal systems. It is therefore of great interest to explore these effects in samples with
smaller extensions of the H absorbing layers, and as close as possible to the critical point. If
a dimensional crossover would occur it can give unique information to further understand the
mechanism behind the H–H interaction and, more generally, it could provide a new insight in
the behaviour of quasi-2D structural phase transitions.
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